97 research outputs found

    Cancer Genome Evolutionary Trajectories in Metastasis

    Get PDF
    Metastatic cancer is a major cause of death and remains largely incurable. A better understanding of metastasis is therefore desperately needed to improve prognosis for late-stage disease. Here we survey the landscape of studies exploring the genomics of metastatic cancer. We consider evidence for genomic drivers of metastasis and explore studies investigating modes of metastatic spread

    Circulating tumor DNA analyses reveal novel resistance mechanisms to CDK inhibition in metastatic breast cancer

    Get PDF
    Cyclin-dependent kinase (CDK) 4/6 inhibition has been demonstrated to improve progression-free survival (PFS) in patients with human epidermal growth factor receptor 2 (HER2−), hormone receptor positive (HR+) in advanced breast cancer [1–3]. Palbociclib, ribociclib and abemaciclib are orally bioavailable selective CDK 4/6 inhibitors. These small molecules likely bind the ATP-binding pocket within the CDK4/6 protein kinases thereby inhibiting phosphorylation of retinoblastoma tumour suppressor protein (Rb). In its hypophosphorylated state Rb remains bound to E2F thereby preventing progression through the G1-S-cell cycle checkpoint [4]. The mechanism behind the observed efficacy of CDK inhibition in metastatic breast cancer may relate to a dependence of HR+ breast cancer on CDK4/6 activity to override Rb mediated repression of cell cycle progression (Figure 1) [5]

    Revisiting inconsistency in large pharmacogenomic studies

    Get PDF
    In 2013, we published a comparative analysis of mutation and gene expression profiles and drug sensitivity measurements for 15 drugs characterized in the 471 cancer cell lines screened in the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE). While we found good concordance in gene expression profiles, there was substantial inconsistency in the drug responses reported by the GDSC and CCLE projects. We received extensive feedback on the comparisons that we performed. This feedback, along with the release of new data, prompted us to revisit our initial analysis. We present a new analysis using these expanded data, where we address the most significant suggestions for improvements on our published analysis - that targeted therapies and broad cytotoxic drugs should have been treated differently in assessing consistency, that consistency of both molecular profiles and drug sensitivity measurements should be compared across cell lines, and that the software analysis tools provided should have been easier to run, particularly as the GDSC and CCLE released additional data. Our re-analysis supports our previous finding that gene expression data are significantly more consistent than drug sensitivity measurements. Using new statistics to assess data consistency allowed identification of two broad effect drugs and three targeted drugs with moderate to good consistency in drug sensitivity data between GDSC and CCLE. For three other targeted drugs, there were not enough sensitive cell lines to assess the consistency of the pharmacological profiles. We found evidence of inconsistencies in pharmacological phenotypes for the remaining eight drugs. Overall, our findings suggest that the drug sensitivity data in GDSC and CCLE continue to present challenges for robust biomarker discovery. This re-analysis provides additional support for the argument that experimental standardization and validation of pharmacogenomic response will be necessary to advance the broad use of large pharmacogenomic screens

    Artificial intelligence in cancer imaging: Clinical challenges and applications

    Get PDF
    Judgement, as one of the core tenets of medicine, relies upon the integration of multilayered data with nuanced decision making. Cancer offers a unique context for medical decisions given not only its variegated forms with evolution of disease but also the need to take into account the individual condition of patients, their ability to receive treatment, and their responses to treatment. Challenges remain in the accurate detection, characterization, and monitoring of cancers despite improved technologies. Radiographic assessment of disease most commonly relies upon visual evaluations, the interpretations of which may be augmented by advanced computational analyses. In particular, artificial intelligence (AI) promises to make great strides in the qualitative interpretation of cancer imaging by expert clinicians, including volumetric delineation of tumors over time, extrapolation of the tumor genotype and biological course from its radiographic phenotype, prediction of clinical outcome, and assessment of the impact of disease and treatment on adjacent organs. AI may automate processes in the initial interpretation of images and shift the clinical workflow of radiographic detection, management decisions on whether or not to administer an intervention, and subsequent observation to a yet to be envisioned paradigm. Here, the authors review the current state of AI as applied to medical imaging of cancer and describe advances in 4 tumor types (lung, brain, breast, and prostate) to illustrate how common clinical problems are being addressed. Although most studies evaluating AI applications in oncology to date have not been vigorously validated for reproducibility and generalizability, the results do highlight increasingly concerted efforts in pushing AI technology to clinical use and to impact future directions in cancer care

    Migrating the SNP array-based homologous recombination deficiency measures to next generation sequencing data of breast cancer

    Get PDF
    The first genomic scar-based homologous recombination deficiency (HRD) measures were produced using SNP arrays. As array-based technology has been largely replaced by next generation sequencing approaches, it has become important to develop algorithms that derive the same type of genomic scar scores from next generation sequencing (whole exome “WXS”, whole genome “WGS”) data. In order to perform this analysis, we introduce here the scarHRD R package and show that using this method the SNP array-based and next generation sequencing-based derivation of HRD scores show good correlation (Pearson correlation between 0.73 and 0.87 depending on the actual HRD measure) and that the NGS-based HRD scores distinguish similarly well between BRCA mutant and BRCA wild-type cases in a cohort of triple-negative breast cancer patients of the TCGA data set

    Glioblastoma adaptation traced through decline of an IDH1 clonal driver and macro-evolution of a double-minute chromosome

    Get PDF
    Background: Glioblastoma (GBM) is the most common malignant brain cancer occurring in adults, and is associated with dismal outcome and few therapeutic options. GBM has been shown to predominantly disrupt three core pathways through somatic aberrations, rendering it ideal for precision medicine approaches. Methods: We describe a 35-year-old female patient with recurrent GBM following surgical removal of the primary tumour, adjuvant treatment with temozolomide and a 3-year disease-free period. Rapid whole-genome sequencing (WGS) of three separate tumour regions at recurrence was carried out and interpreted relative to WGS of two regions of the primary tumour. Results: We found extensive mutational and copy-number heterogeneity within the primary tumour. We identified a TP53 mutation and two focal amplifications involving PDGFRA, KIT and CDK4, on chromosomes 4 and 12. A clonal IDH1 R132H mutation in the primary, a known GBM driver event, was detectable at only very low frequency in the recurrent tumour. After sub-clonal diversification, evidence was found for a whole-genome doubling event and a translocation between the amplified regions of PDGFRA, KIT and CDK4, encoded within a double-minute chromosome also incorporating miR26a-2. The WGS analysis uncovered progressive evolution of the double-minute chromosome converging on the KIT/PDGFRA/PI3K/mTOR axis, superseding the IDH1 mutation in dominance in a mutually exclusive manner at recurrence, consequently the patient was treated with imatinib. Despite rapid sequencing and cancer genome-guided therapy against amplified oncogenes, the disease progressed, and the patient died shortly after. Conclusion: This case sheds light on the dynamic evolution of a GBM tumour, defining the origins of the lethal sub-clone, the macro-evolutionary genomic events dominating the disease at recurrence and the loss of a clonal driver. Even in the era of rapid WGS analysis, cases such as this illustrate the significant hurdles for precision medicine success

    Representative Sequencing: Unbiased Sampling of Solid Tumor Tissue

    Get PDF
    Although thousands of solid tumors have been sequenced to date, a fundamental under-sampling bias is inherent in current methodologies. This is caused by a tissue sample input of fixed dimensions (e.g., 6 mm biopsy), which becomes grossly under-powered as tumor volume scales. Here, we demonstrate representative sequencing (Rep-Seq) as a new method to achieve unbiased tumor tissue sampling. Rep-Seq uses fixed residual tumor material, which is homogenized and subjected to next-generation sequencing. Analysis of intratumor tumor mutation burden (TMB) variability shows a high level of misclassification using current single-biopsy methods, with 20% of lung and 52% of bladder tumors having at least one biopsy with high TMB but low clonal TMB overall. Misclassification rates by contrast are reduced to 2% (lung) and 4% (bladder) when a more representative sampling methodology is used. Rep-Seq offers an improved sampling protocol for tumor profiling, with significant potential for improved clinical utility and more accurate deconvolution of clonal structure

    Intratumoural evolutionary landscape of high-risk prostate cancer: the PROGENY study of genomic and immune parameters

    Get PDF
    Background: Intratumoural heterogeneity (ITH) is well recognised in prostate cancer (PC), but its role in high-risk disease is uncertain. A prospective, single-arm, translational study using targeted multiregion prostate biopsies was carried out to study genomic and T-cell ITH in clinically high-risk PC aiming to identify drivers and potential therapeutic strategies. Patients and methods: Forty-nine men with elevated prostate-specific antigen and multiparametric-magnetic resonance imaging detected PC underwent image-guided multiregion transperineal biopsy. Seventy-nine tumour regions from 25 patients with PC underwent sequencing, analysis of mutations, copy number and neoepitopes combined with tumour infiltrating T-cell subset quantification. Results: We demonstrated extensive somatic nucleotide variation and somatic copy number alteration heterogeneity in high-risk PC. Overall, the mutational burden was low (0.93/Megabase), but two patients had hypermutation, with loss of mismatch repair (MMR) proteins, MSH2 and MSH6. Somatic copy number alteration burden was higher in patients with metastatic hormone-naive PC (mHNPC) than in those with high-risk localised PC (hrlPC), independent of Gleason grade. Mutations were rarely ubiquitous and mutational frequencies were similar for mHNPC and hrlPC patients. Enrichment of focal 3q26.2 and 3q21.3, regions containing putative metastasis drivers, was seen in mHNPC patients. We found evidence of parallel evolution with three separate clones containing activating mutations of beta-catenin in a single patient. We demonstrated extensive intratumoural and intertumoural T-cell heterogeneity and high inflammatory infiltrate in the MMR-deficient (MMRD) patients and the patient with parallel evolution of beta-catenin. Analysis of all patients with activating Wnt/beta-catenin mutations demonstrated a low CD8+/FOXP3+ ratio, a potential surrogate marker of immune evasion. Conclusions: The PROGENY (PROstate cancer GENomic heterogeneitY) study provides a diagnostic platform suitable for studying tumour ITH. Genetic aberrations in clinically high-risk PC are associated with altered patterns of immune infiltrate in tumours. Activating mutations of Wnt/beta-catenin signalling pathway or MMRD could be considered as potential biomarkers for immunomodulation therapies. Clinical Trials.gov Identifier: NCT02022371

    A clonal expression biomarker associates with lung cancer mortality

    Get PDF
    An aim of molecular biomarkers is to stratify patients with cancer into disease subtypes predictive of outcome, improving diagnostic precision beyond clinical descriptors such as tumor stage1. Transcriptomic intratumor heterogeneity (RNA-ITH) has been shown to confound existing expression-based biomarkers across multiple cancer types2,3,4,5,6. Here, we analyze multi-region whole-exome and RNA sequencing data for 156 tumor regions from 48 patients enrolled in the TRACERx study to explore and control for RNA-ITH in non-small cell lung cancer. We find that chromosomal instability is a major driver of RNA-ITH, and existing prognostic gene expression signatures are vulnerable to tumor sampling bias. To address this, we identify genes expressed homogeneously within individual tumors that encode expression modules of cancer cell proliferation and are often driven by DNA copy-number gains selected early in tumor evolution. Clonal transcriptomic biomarkers overcome tumor sampling bias, associate with survival independent of clinicopathological risk factors, and may provide a general strategy to refine biomarker design across cancer types

    Multigene prognostic tests in breast cancer: past, present, future

    Get PDF
    There is growing consensus that multigene prognostic tests provide useful complementary information to tumor size and grade in estrogen receptor (ER)-positive breast cancers. The tests primarily rely on quantification of ER and proliferation-related genes and combine these into multivariate prediction models. Since ER-negative cancers tend to have higher proliferation rates, the prognostic value of current multigene tests in these cancers is limited. First-generation prognostic signatures (Oncotype DX, MammaPrint, Genomic Grade Index) are substantially more accurate to predict recurrence within the first 5 years than in later years. This has become a limitation with the availability of effective extended adjuvant endocrine therapies. Newer tests (Prosigna, EndoPredict, Breast Cancer Index) appear to possess better prognostic value for late recurrences while also remaining predictive of early relapse. Some clinical prediction problems are more difficult to solve than others: there are no clinically useful prognostic signatures for ER-negative cancers, and drug-specific treatment response predictors also remain elusive. Emerging areas of research involve the development of immune gene signatures that carry modest but significant prognostic value independent of proliferation and ER status and represent candidate predictive markers for immune-targeted therapies. Overall metrics of tumor heterogeneity and genome integrity (for example, homologue recombination deficiency score) are emerging as potential new predictive markers for platinum agents. The recent expansion of high-throughput technology platforms including low-cost sequencing of circulating and tumor-derived DNA and RNA and rapid reliable quantification of microRNA offers new opportunities to build extended prediction models across multiplatform data
    corecore